Boundary Detection with OpenCV

This is a project I worked on a few years ago. The demo shows the end result of using opencv for lane detection. The program detected for straight lines of the road using hough line transform and masked for the white lane color. Not great results, but it's a good start into researching/implementing deeper image processing algorithms for detection.

import numpy as np from PIL import ImageGrab import cv2 import time import pyautogui from numpy import ones,vstack from numpy.linalg import lstsq from directkeys import PressKey,ReleaseKey, W, A, S, D from statistics import mean def roi(img, vertices): #blank mask: mask = np.zeros_like(img) #filling pixels inside the polygon defined by "vertices" with the fill color cv2.fillPoly(mask, vertices, 255) #returning the image only where mask pixels are nonzero masked = cv2.bitwise_and(img, mask) return masked def draw_lanes(img, lines, color=[0, 255, 255], thickness=3): # if this fails, go with some default line try: # finds the maximum y value for a lane marker # (since we cannot assume the horizon will always be at the same point.) ys = [] for i in lines: for ii in i: ys += [ii[1],ii[3]] min_y = min(ys) max_y = 600 new_lines = [] line_dict = {} for idx,i in enumerate(lines): for xyxy in i: # These four lines: # modified from http://stackoverflow.com/questions/21565994/method-to-return-the-equation-of-a-straight-line-given-two-points # Used to calculate the definition of a line, given two sets of coords. x_coords = (xyxy[0],xyxy[2]) y_coords = (xyxy[1],xyxy[3]) A = vstack([x_coords,ones(len(x_coords))]).T m, b = lstsq(A, y_coords)[0] # Calculating our new, and improved, xs x1 = (min_y-b) / m x2 = (max_y-b) / m line_dict[idx] = [m,b,[int(x1), min_y, int(x2), max_y]] new_lines.append([int(x1), min_y, int(x2), max_y]) final_lanes = {} for idx in line_dict: final_lanes_copy = final_lanes.copy() m = line_dict[idx][0] b = line_dict[idx][1] line = line_dict[idx][2] if len(final_lanes) == 0: final_lanes[m] = [ [m,b,line] ] else: found_copy = False for other_ms in final_lanes_copy: if not found_copy: if abs(other_ms*1.2) > abs(m) > abs(other_ms*0.8): if abs(final_lanes_copy[other_ms][0][1]*1.2) > abs(b) > abs(final_lanes_copy[other_ms][0][1]*0.8): final_lanes[other_ms].append([m,b,line]) found_copy = True break else: final_lanes[m] = [ [m,b,line] ] line_counter = {} for lanes in final_lanes: line_counter[lanes] = len(final_lanes[lanes]) top_lanes = sorted(line_counter.items(), key=lambda item: item[1])[::-1][:2] lane1_id = top_lanes[0][0] lane2_id = top_lanes[1][0] def average_lane(lane_data): x1s = [] y1s = [] x2s = [] y2s = [] for data in lane_data: x1s.append(data[2][0]) y1s.append(data[2][1]) x2s.append(data[2][2]) y2s.append(data[2][3]) return int(mean(x1s)), int(mean(y1s)), int(mean(x2s)), int(mean(y2s)) l1_x1, l1_y1, l1_x2, l1_y2 = average_lane(final_lanes[lane1_id]) l2_x1, l2_y1, l2_x2, l2_y2 = average_lane(final_lanes[lane2_id]) return [l1_x1, l1_y1, l1_x2, l1_y2], [l2_x1, l2_y1, l2_x2, l2_y2], lane1_id, lane2_id except Exception as e: print(str(e)) def process_img(image): original_image = image # edge detection processed_img = cv2.Canny(image, threshold1 = 200, threshold2=300) processed_img = cv2.GaussianBlur(processed_img,(5,5),0) vertices = np.array([[10,500],[10,300],[300,200],[500,200],[800,300],[800,500], ], np.int32) processed_img = roi(processed_img, [vertices]) # more info: http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_houghlines/py_houghlines.html # rho theta thresh min length, max gap: lines = cv2.HoughLinesP(processed_img, 1, np.pi/180, 180, 20, 15) m1 = 0 m2 = 0 try: l1, l2, m1,m2 = draw_lanes(original_image,lines) cv2.line(original_image, (l1[0], l1[1]), (l1[2], l1[3]), [0,255,0], 30) cv2.line(original_image, (l2[0], l2[1]), (l2[2], l2[3]), [0,255,0], 30) except Exception as e: print(str(e)) pass try: for coords in lines: coords = coords[0] try: cv2.line(processed_img, (coords[0], coords[1]), (coords[2], coords[3]), [255,0,0], 3) except Exception as e: print(str(e)) except Exception as e: pass return processed_img,original_image, m1, m2 def straight(): PressKey(W) ReleaseKey(A) ReleaseKey(D) def left(): PressKey(A) ReleaseKey(W) ReleaseKey(D) ReleaseKey(A) def right(): PressKey(D) ReleaseKey(A) ReleaseKey(W) ReleaseKey(D) def slow_ya_roll(): ReleaseKey(W) ReleaseKey(A) ReleaseKey(D) for i in list(range(4))[::-1]: print(i+1) time.sleep(1) last_time = time.time() while True: screen = np.array(ImageGrab.grab(bbox=(0,40,800,640))) print('Frame took {} seconds'.format(time.time()-last_time)) last_time = time.time() new_screen,original_image, m1, m2 = process_img(screen) #cv2.imshow('window', new_screen) cv2.imshow('window2',cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)) if m1 < 0 and m2 < 0: right() elif m1 > 0 and m2 > 0: left() else: straight() #cv2.imshow('window',cv2.cvtColor(screen, cv2.COLOR_BGR2RGB)) if cv2.waitKey(25) & 0xFF == ord('q'): cv2.destroyAllWindows() break

Python Image Recognition

In this project, I used OpenCV for image recognition. OpenCV is a decent Computer Vision package, it has great functionality - blurring, straight line detection, contouring. I find it not as powerful as training your own neural network using Keras or Google's Tensorflow library. In the future, I will likely look into using the YOLO (You only look once) package or Tensorflow. One drawback with training your own network is that large amounts of data cannot be trained in minutes; it could take many hours or even days. I would look into setting up a GPU if you are looking to use Tensorflow in your projects. https://github.com/akhily1/ImageRecognition


1